Refine your search:     
Report No.

Rock spalling and countermeasures in shaft sinking at the Horonobe Underground Research Laboratory

Tsusaka, Kimikazu; Inagaki, Daisuke; Nago, Makito*; Aoki, Tomoyuki*; Shigehiro, Michiko*

The Horonobe Underground Research Laboratory is planned to consist of the Ventilation Shaft (4.5 m in diameter), the East and West Access Shafts (6.5 m in diameter). The host rock of the URL site comprises Neogene sedimentary rocks. The unconfined compressive strength of the rocks is less than 20 MPa on average. Anisotropic stress distribution around the URL is also confirmed. Because several highly permeable fractures (hydraulic transmissivity: approximately 10$$^{-5}$$m$$^{2}$$/s) with the size greater than the shaft diameter develop under the condition of around 2 in competence factor (i.e., the ratio of the unconfined compressive strength of rock to the initial stress) below a depth of 250 m, shaft sinking is a challenging issue from the viewpoint of tunnel engineering in the Horonobe URL Project. In this paper, the construction of the Ventilation Shaft below a depth of 250 m at the Horonobe URL is reported. During shaft sinking, fracture mapping of the shaft wall was performed. The geometry of the shaft wall was also measured using a three-dimensional laser scanner in order to investigate the shape and volume of rock spalling in the shaft wall resulting from the excavation work. Rock spalling was predominantly observed on the south and north wall rock corresponding to the direction of the minimum horizontal initial stress. A large amount of rock spalling also developed along a large-scale fault. With respect to the lining span and the layout of rockbolts, several support patterns were designed and installed as the countermeasures to prevent the development of excessive rock spalling. A flowchart for selecting the optimum support design was then developed.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.