Refine your search:     
Report No.
 - 

Quantum well solar cells for space; The Impact of carrier removal on end-of-life device performance

Hoheisel, R.*; Gonz$'a$lez, M.*; Lumb, M.*; Scheiman, D.*; Messenger, S. R.*; Bailey, C. G.*; Lorentzen, J.*; Tibbits, T. N. D.*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Jenkins, P. P.*; Walters, R. J.*

In this paper a detailed analysis on the radiation response of solar cells with multi quantum-wells (MQW) included in the quasi-intrinsic region between the emitter and the base layer is presented. Whilst the primary source of radiation damage of photovoltaic devices is generally associated with minority carrier lifetime reduction, we found that in the case of MQW devices another effect of radiation damage, the so called carrier removal (CR) requires additional consideration. Experimental measurements and numerical simulations reveal that with increasing radiation dose, CR can alter the initially quasi-intrinsic background doping of the MQW region to become further n or p type. This can result in a significant narrowing and even in a collapse of the electrical field between the emitter and the base where the MQWs are located. Eventually, remarks for improved radiation hard MQW device designs are provided.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.