Refine your search:     
Report No.
 - 

Thermal stability of BNCT neutron production target synthesized by ${it in-situ}$ lithium deposition and ion implantation

Ishiyama, Shintaro; Baba, Yuji  ; Fujii, Ryo*; Nakamura, Masaru*; Imahori, Yoshio*

To testify thermal stability of the BNCT neutron target synthesized by ${it in-situ}$ lithium deposition and ion implantation, laser heating test of the Li$$_{3}$$N/Li/Cu tri-layered target was conducted in high vacuum chamber of 10$$^{-6}$$ Pa and thermal stability of the tri-layered target was characterized by X-ray photoelectron spectroscopy. Following conclusions were derived; (1) The Li$$_{3}$$N/Li/Cu tri- layered target with very low oxide and carbon contamination was synthesized by ${it in-situ}$ lithium deposition and ion implantation techniques without H$$_{2}$$O and O$$_{2}$$ additions (2) The starting temperature of evaporation of the Li$$_{3}$$N/Li/Cu tri-layered target increased by 120 K compared to that of the Li/Cu target and (3) frequent repair synthesis of the damaged Li$$_{3}$$N/Li/Cu tri-layered target caused by evaporation is possible.

Accesses

:

- Accesses

InCites™

:

Percentile:10.47

Category:Metallurgy & Metallurgical Engineering

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.