Refine your search:     
Report No.
 - 

Mo recycling property from generator materials with irradiated molybdenum

Kakei, Sadanori*; Kimura, Akihiro ; Niizeki, Tomotake*; Ishida, Takuya; Nishikata, Kaori  ; Kurosawa, Makoto ; Yoshinaga, Hideo*; Hasegawa, Yoshio*; Tsuchiya, Kunihiko 

The Japan Materials Testing Reactor (JMTR) is expected to contribute to the expansion of industrial utilization, such as the domestic production of $$^{99}$$Mo for the medical diagnosis medicine $$^{rm 99m}$$Tc. Production by the (n, $$gamma$$) method is proposed as domestic $$^{99}$$Mo production in JMTR because of the low amount of radioactive wastes and the easy $$^{99}$$Mo/$$^{rm 99m}$$Tc production process. Molybdenum oxide (MoO$$_{3}$$) pellets, poly zirconium compounds (PZC) and poly titanium compounds (PTC) are used as the irradiation target and generator for the production of $$^{99}$$Mo/$$^{rm 99m}$$Tc by the (n, $$gamma$$) method. However, it is necessary to use the enriched $$^{98}$$MoO$$_{3}$$, which is very expensive, to increase the specific activity of $$^{99}$$Mo. Additionally, a large amount of used PZC and PTC is generated after the decay of $$^{99}$$Mo. Therefore, this recycling technology of used PZC/PTC has been developed to recover molybdenum (Mo) as an effective use of resources and a reduction of radioactive wastes. The total Mo recovery rate of this process was 95.8%. From the results of the hot experiments, we could demonstrate that the recovery of MoO$$_{3}$$ and the recycling of PZC are possible. In the future, the equipment of recovering Mo will be installed in JMTR-Hot Cell, and this recycling process will be able to contribute to the reduction of production costs of $$^{rm 99m}$$Tc and the reduction of radioactive wastes.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.