Refine your search:     
Report No.

Proposal of direct alpha estimation technique by using ring ratio in the Continuous Neutron Monitor (CNM)

Mukai, Yasunobu; Nakamura, Hironobu; Fujisaku, Sakae; Kurita, Tsutomu; LaFleur, A. M.*; Menlove, H. O.*; Marlow, J. B.*

In case of the Pu mass determination in scattered powder in a GB using Continuous Neutron Monitor (CNM) with totals, self-multiplication of neutron (M) and $$alpha$$ value are properly required to be set. M can be easily estimated by a simulation code, but it is very difficult to estimate $$alpha$$ value by such a simulation because interactions between $$alpha$$ ray generated from Pu and impurities are not consistent. Therefore, we tried to examine an estimation technique of $$alpha$$ value by direct measurement. As a result, by measuring the samples taken from the scattered powder using a multiplicity counter with a dual ring structure of He-3 tubes, we could confirm a good correlation between ring ratio (inner / outer ring count rates) and the $$alpha$$ values. Thus, we can estimate $$alpha$$ value in the powder directly by the ring ratio measurement. By applying this technique to CNM and designing a new detector with a double layer structure of neutron detection tubes, we had a prospect that CNM would be able to measure the Pu mass continuously.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.