Refine your search:     
Report No.
 - 

Rashba spin-orbit anisotropy and the electric field control of magnetism

Barnes, S. E.*; Ieda, Junichi   ; Maekawa, Sadamichi

The control of the magnetism of ultra-thin ferromagnetic layers using an electric field rather than a current, if large enough, would lead to many technologically important applications. To date, while it is usually assumed the changes in the magnetic anisotropy, leading to such a control, arises from surface charge doping of the magnetic layer, a number of key experiments cannot be understood within such a scenario. Much studied is the fact that, for non-magnetic metals or semi-conductors, a large surface electric field gives rise to a Rashba spin-orbit coupling which leads to a spin-splitting of the conduction electrons. For a magnet, this splitting is modified by the exchange field resulting in a large magnetic anisotropy energy via the Dzyaloshinskii-Moriya mechanism. This different, yet traditional, path to an electrically induced anisotropy energy can explain the electric field, thickness, and material dependence reported in many experiments.

Accesses

:

- Accesses

InCites™

:

Percentile:97.26

Category:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.