Refine your search:     
Report No.
 - 

Effects of nuclear data library and ultra-fine group calculation for large size sodium-cooled fast reactor OECD benchmarks

Kugo, Teruhiko ; Sugino, Kazuteru; Uematsu, Mari Mariannu; Numata, Kazuyuki*

The present paper summarizes calculation results for an international benchmark proposed under the framework of the Working Party on scientific issues of Reactor Systems (WPRS) of the Nuclear Energy Agency of the OECD. It focuses on the large size oxide-fueled SFR. Library effect for core performance characteristics and reactivity feedback coefficients is analyzed using sensitivity analysis. The effect of ultra-fine energy group calculation in effective cross section generation is also analyzed. The discrepancy is about 0.4% for a neutron multiplication factor by changing JENDL-4.0 with JEFF-3.1. That is about -0.1% by changing JENDL-4.0 with ENDF/B-VII.1. The main contributions to the discrepancy between JENDL-4.0 and ENDF/B-VII.1 are $$^{240}$$Pu capture, $$^{238}$$U inelastic scattering and $$^{239}$$Pu fission. Those to the discrepancy between JENDL-4.0 and JEFF-3.1 are $$^{23}$$Na inelastic scattering, $$^{56}$$Fe inelastic scattering, $$^{238}$$Pu fission, $$^{240}$$Pu capture, $$^{240}$$Pu fission, $$^{238}$$U inelastic scattering, $$^{239}$$Pu fission and $$^{239}$$Pu nu-value. As for the sodium void reactivity, JEFF-3.1 and ENDF/B-VII.1 underestimate by about 8% compared with JENDL-4.0. The main contributions to the discrepancy between JENDL-4.0 and ENDF/B-VII.1 are $$^{23}$$Na elastic scattering, $$^{23}$$Na inelastic scattering and $$^{239}$$Pu fission. That to the discrepancy between JENDL-4.0 and JEFF-3.1 is $$^{23}$$Na inelastic scattering. The ultra-fine energy group calculation increases the sodium void reactivity by 2%.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.