Refine your search:     
Report No.
 - 

Fogwater deposition modeling for terrestrial ecosystems; A Review of developments and measurements

Katata, Genki

Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater ($$V$$$$_{rm d}$$) in model results, wind speed, and plant species structures associated with literature values were gathered for model evaluation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as two orders of magnitude, which were likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review showed that $$V$$$$_{rm d}$$ values ranged from 2.1-8.0 cm s$$^{-1}$$ for short vegetation, whereas $$V$$$$_{rm d}$$ = 7.7-92 cm s$$^{-1}$$ and 0-20 cm s$$^{-1}$$ for forests measured by through fall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model evaluation are outlined.

Accesses

:

- Accesses

InCites™

:

Percentile:67.02

Category:Meteorology & Atmospheric Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.