Refine your search:     
Report No.
 - 

Spatio-temporal evolution of the H$$rightarrow$$L back transition

Miki, Kazuhiro; Diamond, P. H.*; Schmitz, L.*; McDonald, D. C.*; Estrada, T.*; G$"u$rcan, $"O$. D.*; Tynan, G. R.*

Since ITER will operate close to threshold and with limited control, the H$$rightarrow$$L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model, we investigate ELM-free H$$rightarrow$$L back transition dynamics in order to isolate transport physics effects. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-downs reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in the profile gradient scale length is characterized by the Nusselt number. Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number.

Accesses

:

- Accesses

InCites™

:

Percentile:64.31

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.