Refine your search:     
Report No.
 - 

Ion acceleration by the 10$$^{21}$$ Wcm$$^{-2}$$ intensity high contrast laser pulses interacting with the thin foil target

Nishiuchi, Mamiko; Sakaki, Hironao; Nishio, Katsuhisa   ; Orlandi, R.  ; Sako, Hiroyuki   ; Pikuz, T.; Faenov, A. Ya.*; Esirkepov, T. Z.; Pirozhkov, A. S.; Matsukawa, Kenya*; Sagisaka, Akito; Ogura, Koichi; Kanasaki, Masato*; Kiriyama, Hiromitsu; Fukuda, Yuji; Koura, Hiroyuki   ; Kando, Masaki; Yamauchi, Tomoya*; Watanabe, Yukinobu*; Bulanov, S. V.; Kondo, Kiminori; Imai, Kenichi; Nagamiya, Shoji*

Laser-driven ion beam is paid attention because of its peculiar characteristics. One of the applications is the compact injector for the conventional accelerator system for the nuclear research. For that objective, we have carried out the J-KAREN experiment with 10$$^{21}$$ Wcm$$^{-2}$$ of intensity, less than 10 J of energy and 35fs of laser duration with 10$$^{10}$$ contrast level. The J-KAREN laser pulses are irradiated on the Al foil target. Almost fully stripped aluminum ion acceleration up to 12 MeV/u from the interaction between the ultra-intense short pulse high contrast laser and the micrometer thick foil target is presented.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.