Refine your search:     
Report No.

A New X-ray fluorescence spectroscopy for extraterrestrial materials using muon beam

Terada, Kentaro*; Ninomiya, Kazuhiko*; Osawa, Takahito; Tachibana, Shogo*; Miyake, Yasuhiro*; Kubo, Kenya*; Kawamura, Naritoshi*; Higemoto, Wataru; Tsuchiyama, Akira*; Ebihara, Mitsuru*; Uesugi, Masayuki*

After the discovery of X-ray by Rontgen, mankind got a new eye to see through things. This fluoroscopy, so-called X-ray radiography that gives the density distribution of the inside of an object, has been applied to the vast research field such as natural/material/medical sciences, industry and technology. The recent development on the intense pulsed muon source at J-PARC MUSE (rate of 106 cps for 60 MeV/c) enabled us to pioneer a new frontier of analytical sciences. Here we report on a non-destructive elemental analysis by using muon capture. Controlling muon's momentum from 32.5 to 57.5 MeV/c. we successfully demonstrated a depth-profile analysis of light elements from several mm-thick layered materials, and non-destructive bulk analyses of meteorites containing organics. Now it is a beginning to utilize a new eye, muon radiography.



- Accesses




Category:Multidisciplinary Sciences



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.