Refine your search:     
Report No.
 - 

Emission characteristics of microwave-assisted laser plasma induced in air, Ar, and He gases

Khumaeni, A.; Miyabe, Masabumi   ; Akaoka, Katsuaki ; Wakaida, Ikuo  

The use of Laser-Induced Breakdown Spectroscopy (LIBS) to heavier atoms requires a higher resolution power of the LIBS spectrometer to identify each emission line separately. Such a spectrometer is less sensitive and thus requires a more intense source of emission. We developed a novel method of microwave-assisted LIBS to produce a high intense plasma. Gadolinium oxide was used as a simulated sample of nuclear fuel material. The microwave generated by a magnetron was coupled to the plasma by the simple loop antenna in the vacuum chamber to enhance the emission. The plasma was induced in various ambient gases including air, Ar, and He gases, and the emission characteristics with microwave are investigated. The enhancement factor for the case with microwave in Ar and He gas are approximately 70 times higher than the case without microwave, while in air environment, the enhancement factor is approximately 40 times. In these cases, it might be assumed that in air case, thermal excitation process by electron collisions might be predominant, and on the other hand, in Ar and He gases, energy transfer from metastable states of these gases might be assumed a major process. To clarify these phenomena, study on excitation process is necessary.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.