Low-energy states in
Zn and the structure of
Ni
Orlandi, R.
; M
cher, D.*; Raabe, R.*; Jungclaus, A.*; Pain, S. D.*; Bildstein, V.*; Chapman, R.*; De Angelis, G.*; Johansen, J. G.*; Van Duppen, P.*; Andreyev, A. N.*; Bottoni, S.*; Cocolios, T. E.*; De Witte, H.*; Diriken, J.*; Elseviers, J.*; Flavigny, F.*; Gaffney, L. P.*; Gernh
user, R.*; Gottardo, A.*; Huyse, M.*; Illana, A.*; Konki, J.*; Kr
ll, T.*; Kr
cken, R.*; Lane, J. F. W.*; Liberati, V.*; Marsh, B.*; Nowak, K.*; Nowacki, F.*; Pakarinen, J.*; Rapisarda, E.*; Recchia, F.*; Reiter, P.*; Roger, T.*; Sahin, E.*; Seidlitz, M.*; Sieja, K.*; Smith, J. F.*; Valiente-Dob
n, J. J.*; von Schmid, M.*; Voulot, D.*; Warr, N.*; Wenander, F. K.*; Wimmer, K.*
Single-neutron states in the
= 49 isotope
Zn were populated in the
Zn(d,p)
Zn transfer reaction at REX-ISOLDE, CERN. The combined detection of protons ejected in the reaction and of
rays emitted by
Zn permitted the identification of the lowest-lying 5/2
and 1/2
excited states. The analysis of proton angular distributions links these states to a significant amount of single-particle strength around 1 MeV, and specifically to the
d
and
s
neutron orbits, which lie above the
= 50 neutron shell gap. Comparison with large-scale-shell-model calculations supports a robust
= 50 shell-closure for
Ni. These data constitute a considerable step towards the understanding of the magicity of
Ni and of the structure of isotopes in the region.