Refine your search:     
Report No.
 - 

Development of safety assessment methodology considering the evolution of geological disposal system, 3; Analysis of radionuclide migration with consideration of spatial and temporal change of migration parameters

Shimada, Taro; Takubo, Kazuya; Takeda, Seiji; Tanaka, Tadao

In long-term safety assessment of geological disposal system, it is necessary to evaluate the impact on the nuclides migration where groundwater flow and water composition are changed with decreasing a depth of the repository by uplifts and denudation. Therefore, we developed an integrated safety assessment methodology for uplifts and denudation where nuclides migration was evaluated reflecting temporal and spatial changes of parameters of natural and engineered barriers such as distribution coefficient, porosity and groundwater velocity, which were obtained by calculation of groundwater flow, salt water distribution and long-term transition of engineered barriers. The methodology was applied to an assumed disposal site composed of sedimentary rocks with uplift and denudation. Migration parameters of engineered barrier such as coefficient of water permeability and porosity of buffer material were evaluated considering the interaction between overpack and surrounding bentonite clay under the condition of water composition. Migration parameters of the natural barrier such as distribution coefficient were determined by the combination of the geology section and water composition section on the migration pathway from the repository to the outlet of the natural barrier at the depth of 40m from the surface. The migration fluxes of some radionuclides at the outlet of natural barrier were evaluated and then the impacts on nuclides migration by uplifts and denudation were compared.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.