Refine your search:     
Report No.

Interplay between oxidized monovacancy and nitrogen doping in graphene

Hou, Z.*; Shu, D.-J.*; Chai, G.-L.*; Ikeda, Takashi; Terakura, Kiyoyuki*

In most of the N-doped graphene which attracts strong attention in the context of precious-metal free catalysts and nanoelectronics, the oxygen content is generally higher than or at least comparable to the nitrogen content. We perform density functional theory calculations to study the interplay of oxidized monovacancies and the nitrogen doping, motivated by the fact that MV is more frequently observed and more chemically active than divacancy and Stone-Wales defect. We determine the phase diagrams of un-doped and nitrogen-doped oxidized MVs as a function of temperature and partial pressure of O$$_{2}$$ and H$$_{2}$$ gases. The modification of the electronic structure of MV by oxidation and N doping is studied. Our results show that the ether group is a common component in stable configurations of oxidized MVs. Most of the stable configurations of oxidized MVs do not induce any carriers.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.