Treatment of highly contaminated water with highly selective adsorbents mainly composed of zeolites
Mimura, Hitoshi*; Yamagishi, Isao
Massive tsunami caused by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. At present, large amounts of high-activity-level water over 500,000 tons are stored in Fukushima NPP-1 site, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the circulating injection cooling system using packed columns with inorganic ion-exchangers is operated and the cold shutdown is accomplished. However, the advancement of operating system and the safety management of secondary solid wastes are very important subject. In this paper, the adsorption properties and solidification characteristics are compared for Cs and Sr selective adsorbents mainly composed of zeolites and the enhancement of adsorption properties are reported. Especially, naturally occurring zeolites abundant in Japan have high selectivity towards Cs, and also have excellent functions of gas trapping and self sintering for stable solidification. Zeolites are thus expected for the treatment and disposal of contaminated water in future. This paper also reports the present situation of safety management of solid wastes and the development of stable solidification methods, and summarizes the future subjects considering the safety disposal.