Refine your search:     
Report No.
 - 

Process evaluation of use of HTGRs to an ironmaking system based on active carbon recycling energy system (iACRES)

Hayashi, Kentaro*; Kasahara, Seiji  ; Kurihara, Kohei*; Nakagaki, Takao*; Yan, X. ; Inagaki, Yoshiyuki; Ogawa, Masuro

Reducing coking coal consumption and CO$$_{2}$$ emissions by application of HTGRs (high temperature gas-cooled reactors) to iACRES (ironmaking system based on active carbon recycling energy system) was investigated using process flow modeling. Two systems were evaluated: a SOEC (solid oxide electrolysis cell) system using CO$$_{2}$$ electrolysis and a RWGS (reverse water-gas shift reaction) system using RWGS reaction with H$$_{2}$$ produced by IS (iodine-sulfur) process. Coking coal consumption was reduced from a conventional BF (blast furnace) steelmaking system by 4.3% in the SOEC system and 10.3% in the RWGS system. CO$$_{2}$$ emissions were decreased by 3.4% in the SOEC system and 8.2% in the RWGS system. Remaining H$$_{2}$$ from the RWGS reactor was used as reducing agent in the BF in the RWGS system. This was the reason of the larger reduction of coking coal consumption and CO$$_{2}$$ emissions. Electricity generation for SOEC occupied most of HTGR heat usage in the SOEC system. H$$_{2}$$ production in the IS process used most of the HTGR heat in the RWGS system. Optimization of the SOEC temperature for the SOEC system and higher H$$_{2}$$ production thermal efficiency in the IS process for the RWGS system will be useful for more efficient heat utilization. One typical-sized BF required 0.5 HTGRs and 2 HTGRs for in the SOEC system and RWGS system, respectively. CO$$_{2}$$ emissions reduction per unit heat input was larger in the SOEC system. Recycling H$$_{2}$$ to the RWGS will be useful for smaller emissions per unit heat in the RWGS system.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.