Refine your search:     
Report No.
 - 

Development of margin assessment methodology of decay heat removal function against external hazards, 2; Tornado PRA methodology

Nishino, Hiroyuki  ; Kurisaka, Kenichi ; Yamano, Hidemasa   

Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi Nuclear Power Station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components in tornado is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 1E-10/ry.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.