Refine your search:     
Report No.

Evaluation of light transport property in alternative He-3 neutron detectors using ceramic scintillators by a ray-tracing simulation

Ozu, Akira; Takase, Misao*; Kurata, Noritaka*; Kobayashi, Nozomi*; Tobita, Hiroshi; Haruyama, Mitsuo; Kureta, Masatoshi; Nakamura, Tatsuya; Suzuki, Hiroyuki; To, Kentaro; Sakasai, Kaoru; Soyama, Kazuhiko; Seya, Michio

In Japan Atomic Energy Agency, the helium-3 alternative neutron detector using ceramic scintillators for nuclear safeguards is under development with the support of the government. The alternative detector module consists of four components: an aluminum regular square tube, a light reflecting foil put on the inner surface of the square tube, a rectangular scintillator sheet sintered on a glass plate, and two PMTs provided at both ends of the tube. The scintillator sheet is fit on the diagonal inside the square tube. The light transport property of scintillator lights inside the tube influences on the fundamental performance of the alternative detector. Therefore, the properties of the lights emitted on the surface of the scintillator sheet and scintillation lights passing through the glass plate to the PMTs in several arrangements of the scintillator in the tubes were investigated with a ray-tracing simulation. The results are described in comparison with the experimental results.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.