Refine your search:     
Report No.

Investigation of deep levels in silicon carbide using ion-induced charge transient spectroscopy

Kada, Wataru*; Onoda, Shinobu; Iwamoto, Naoya*; Hoshino, Norihiro*; Tsuchida, Hidekazu*; Makino, Takahiro; Kambayashi, Yuya; Koka, Masashi; Hanaizumi, Osamu*; Kamiya, Tomihiro; Oshima, Takeshi

Charge transient spectroscopy (QTS) techniques using ionizing particle probes, 5.5 MeV alpha particles from an $$^{241}$$Am radiation source (APQTS) and focused heavy ions (10.5 MeV oxygen) from a 3 MV tandem accelerator (HIQTS) were applied in order to investigate effects of deep levels on the Charge Collection Efficiency (CCE) of Schottky Barrier Diodes (SBDs) fabricated on 4H Silicon Carbide (SiC). The degradation of CCE for 4H-SiC SBDs irradiated with 3 MeV protons at 10$$^{12}$$ /cm$$^{2}$$ was observed. The APQTS and HIQTS measurements for the irradiated 4H-SiC SBDs were performed. As a result, a deep level at an activation energy of 0.73 eV was detected from the irradiated 4H-SiC SBDs.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.