Refine your search:     
Report No.
 - 

Measurement of the displacement cross-section of copper irradiated with 125 MeV protons at 12 K

Iwamoto, Yosuke  ; Yoshiie, Toshimasa*; Yoshida, Makoto*; Nakamoto, Tatsushi*; Sakamoto, Masaaki*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Ishi, Yoshihiro*; Xu, Q.*; Yashima, Hiroshi*; Takahashi, Fumiaki; Mori, Yoshiharu*; Ogitsu, Toru*

To validate Monte Carlo codes for the prediction of radiation damage in metals irradiated by $$>$$100 MeV protons, defect-induced electrical resistivity changes of copper related to the displacement cross-section were measured with 125 MeV proton irradiation at 12 K. The cryogenic irradiation system was developed with a Gifford-McMahon cryocooler to cool the sample via an oxygen-free high-conductivity copper plate by conduction cooling. The sample was a copper wire with a 250$$mu$$m diameter and 99.999% purity sandwiched between two aluminum nitride ceramic sheets. The resistivity increase did not change during annealing after irradiation below 15 K. The experimental displacement cross-section for 125 MeV irradiation shows similar results to the experimental data for 1.1 and 1.94 GeV. Comparison with the calculated results indicated that the defect production efficiency in Monte Carlo codes gives a good quantitative description of the displacement cross-section in the energy region $$>$$ 100 MeV.

Accesses

:

- Accesses

InCites™

:

Percentile:44.75

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.