Refine your search:     
Report No.
 - 

Localization of the beam loss caused by the foil scattering for high-intensity routine operation in the J-PARC 3-GeV Rapid Cycling Synchrotron

Kato, Shinichi; Yamamoto, Kazami   ; Harada, Hiroyuki  ; Hotchi, Hideaki  ; Kinsho, Michikazu  

The J-PARC 3-GeV rapid cycling synchrotron (RCS) accelerates proton beams from 400 MeV to 3 GeV and the designed output beam power is 1 MW. To achieve a high-intensity output beam power, the RCS adapts H$$^{-}$$ charge-exchange multi-turn injection. The H$$^{-}$$ beam from the Linac is delivered to the RCS injection point, where it is injected through a carbon stripper foil in order to strip two electrons and to convert into proton. This injection is divided into 308 turns. Therefore, the both injection and circulating beams hit the foil repeatedly and scattering occur during the injection. Especially, large-scattered particles cause uncontrolled beam losses at downstream area. Thus, a new collimation system was developed and installed downstream of the foil to localize these losses in 2011. In the beam commissioning at 181 MeV and 400 MeV injection energy, unique tuning method of the collimator has been established and consequently these uncontrolled beam losses were localized successfully.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.