Refine your search:     
Report No.
 - 

Proof of principle experiment of laser-driven exotic nuclei extraction-acceleration method

Nishiuchi, Mamiko; Sakaki, Hironao; Nishio, Katsuhisa   ; Orlandi, R.  ; Sako, Hiroyuki   ; Pikuz, T. A.*; Faenov, A. Ya.*; Esirkepov, T. Z.; Pirozhkov, A. S.; Matsukawa, Kenya*; Sagisaka, Akito; Ogura, Koichi; Kanasaki, Masato; Kiriyama, Hiromitsu; Fukuda, Yuji; Koura, Hiroyuki   ; Kando, Masaki; Yamauchi, Tomoya*; Watanabe, Yukinobu*; Bulanov, S. V.; Kondo, Kiminori; Imai, Kenichi; Nagamiya, Shoji*

The contemporary radiofrequency accelerator technology provides radio-isotope beams for the research. However, the existing technology now faces difficulties in exploring the further frontiers. One of the solutions might be brought by the combination of the state of the art high intensity short pulse laser system and the nuclear measurement technique. Recent progress of the laser technology brought table-top lasers with focused intensity up to 10$$^{21}$$ Wcm$$^{-2}$$ with only less than 10 J of energy on target. By the interaction with the solid density target, the laser can extract heavy ions in multi-charged state and low emittance, independently on the chemical properties of the target material. We propose Laser-driven Exotic Nuclei extraction-acceleration methods (LENex), in which the exotic nuclei which are the products in the target by the bombardment of the external ion beam, are extracted away by a femtosecond petawatt laser pulse in the form of highly-charged and high energy beam. As a proof-of-experiment of the LENex scheme, we demonstrate the extraction of the almost fully stripped iron ions with the energies of 0.9 GeV by J-KAREN laser system.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.