Refine your search:     
Report No.

Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

Kasahara, Seiji ; Murata, Tetsuya*; Kamiji, Yu; Terada, Atsuhiko ; Yan, X. ; Inagaki, Yoshiyuki; Mori, Michitsugu*

A heat transport analysis of a district heating and snow melting system in Sapporo and Ishikari, Hokkaido was carried out assuming application of waste heat from GTHTR300, a design of high temperature gas-cooled reactor. The following components in the system were modeled; pipelines of the water loops between GTHTR300 and heat demand district and heat exchangers to transport the heat from the water loops to water loops in the district. Double pipes for the pipeline has disadvantage that pumping electricity consumption was 2.74 times to that of single pipes due to pressure loss in annulus channel. On the other hand, the double pipe was advantageous in less heat loss and excavation load. Heat loss was 33% smaller because heat loss from inner tube was recovered in annulus channel. Excavation area was 23% smaller because water loop was made by one double pipe. Total heat loss from the GTHTR300s to the water loop in the district was 4.2% and ratio of pump electricity to power generation from the GTHTR300s was 0.8%. In January, the maximum heat demand in a year, 97.0% of the heat demand was supplied by 2 GTHTRs. Less distance between GTHTR300 and heat demand district from 40 km to 20 km would make cost of the heat transfer system 22% smaller.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.