Refine your search:     
Report No.

Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method

Kai, Takeshi  ; Yokoya, Akinari; Ukai, Masatoshi*; Fujii, Kentaro; Watanabe, Ritsuko

Role of secondary electrons on DNA damage have not been understood sufficiently because there still exists a lack of study for thermalization process of an electron in liquid phase. We calculated thermalization lengths and spatial distributions of an electron in liquid water using cross sections for rotation and phonon excitations in a liquid phase. Obtained thermalization lengths are in good agreement with experimental results reported by literatures. Thermalization time was also estimated from time evolution of spatial distributions of the incident electron to be hundreds femtoseconds. From these results, we predict that thermalization and pre-hydration of electron might progress simultaneously. These electrons possibly cause damage in biological molecules in a cell. Particularly severe types of DNA damage consisting of proximately located multiple lesions are potentially induced by reaction of DNA with the thermalized electrons by dissociative electron transfer.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.