Refine your search:     
Report No.

An Approximate single fluid 3-dimensional magnetohydrodynamic equilibrium model with toroidal flow

Cooper, W. A.*; Hirshman, S. P.*; Chapman, I. T.*; Brunetti, D.*; Faustin, J. M.*; Graves, J. P.*; Pfefferl$'e$, D.*; Raghunathan, M.*; Sauter, O.*; Tran, T. M.*; Aiba, Nobuyuki

An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment.



- Accesses




Category:Physics, Fluids & Plasmas



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.