Refine your search�ソスF     
Report No.
 - 

Nanodiamond in tellurite glass, 2; Practical nanodiamond-doped fibers

Ruan, Y.*; Ji, H.*; Johnson, B. C.*; Oshima, Takeshi; Greentree, A. D.*; Gibson, B. C.*; Monro, T. M.*; Ebendorff-Heidepriem, H.*

Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. We reported the origin of loss in nanodiamond-doped glass and impact of glass fabrication conditions, as part I. In this study, we report the fabrication of nanodiamond-doped tellurite fibers with significantly reduced loss in the visible through further understanding of the impact of glass fabrication conditions on the interaction of the glass melt with the embedded nanodiamond. We fabricated nanodiamond with Nitrogen-Vacancy (NV) centers by 2 MeV electron irradiation at 1$$times$$10$$^{18}$$ /cm$$^{2}$$ and subsequent annealing at 800 $$^{circ}$$C. The nanodiamonds with NV centers were added into molten Tellurite glass. Tellurite fibers containing nanodiamond with concentrations up to 0.7 ppm-weight were fabricated, while reducing the loss by more than an order of magnitude down to 10 dB/m at 600-800 nm.

Accesses

:

- Accesses

InCites™

:

Percentile:81.62

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.