Refine your search:     
Report No.

Successful development of a new catalyst for efficiently collecting tritium; A Breakthrough toward realization of fusion reactors

Iwai, Yasunori; Kubo, Hitoshi*; Oshima, Yusuke*

We have successfully developed a new hydrophobic platinum catalyst for collecting tritium at nuclear fusion reactors. Catalysts used to collect tritium are called hydrophobic precious metal catalysts. In Japan, hydrophobic precious metal catalysts manufactured from polymers have been used for heavy water refinement. However, this catalyst has issues related to embrittlement to radiation and thermal stability. These technological issues needed to be solved to allow for its application to nuclear fusion reactors requiring further enrichment from highly-concentrated tritiated water. We developed a new method of manufacturing catalysts involving hydrophobic processing with an inorganic substance base. As a result, previous technological issues were able to be solved with the development of a catalyst that exhibited no performance degradation in response to radiation application of 530 kGy, a standard for radiation resistance, and maintenance of thermal stability at over 600$$^{circ}$$C, which is much higher than the 70$$^{circ}$$C temperature that is normally used. The catalyst created with this method was also confirmed to have achieved the world's highest exchange efficiency, equivalent to 1.3 times the previously most powerful efficiency. The application of this catalyst to the liquid phase catalytic exchange process is expected to overcome significant technological hurdles with regards to improving the reliability and efficiency of systems for collecting tritium from tritiated water.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.