検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

核融合炉におけるトリチウムの効率回収に向けた疎水性白金触媒の開発

Development of hydrophobic platinum catalyst for the effective collection of tritium in fusion plants

岩井 保則; 久保 仁志*; 大嶋 優輔*

Iwai, Yasunori; Kubo, Hitoshi*; Oshima, Yusuke*

原子力機構は田中貴金属工業と共同で核融合炉の実現に向けてトリチウムを回収するための新たな疎水性白金触媒の開発に成功した。核融合向けに必要であった触媒の耐放射線性、耐熱性について、無機物質を基材に疎水化処理を施す新たな触媒製法の開発により耐放射線性の目安となる530kGyの放射線照射に対して性能劣化がないこと、また通常使用される温度の70$$^{circ}$$Cを大きく上回る600$$^{circ}$$C超の耐熱性確保にも成功し、これまでの技術的課題を解決した。さらに、この方法で作製した触媒は、従来の約1.3倍に相当する高い交換効率を達成することも確認した。本報告は疎水性触媒による核融合炉安全性の向上につき概説する。

We have successfully developed a new hydrophobic platinum catalyst for collecting tritium at nuclear fusion reactors. Catalysts used to collect tritium are called hydrophobic precious metal catalysts. In Japan, hydrophobic precious metal catalysts manufactured from polymers have been used for heavy water refinement.However, this catalyst has issues related to embrittlement to radiation and thermal stability. These technological issues needed to be solved to allow for its application to nuclear fusion reactors requiring further enrichment from highly-concentrated tritiated water. We developed a new method of manufacturing catalysts involving hydrophobic processing with an inorganic substance base. As a result, previous technological issues were able to be solved with the development of a catalyst that exhibited no performance degradation in response to radiation application of 530kGy, a standard for radiation resistance, and maintenance of thermal stability at over 600$$^{circ}$$C, which is much higher than the 70$$^{circ}$$C temperature that is normally used. The catalyst created with this method was also confirmed to have achieved the world's highest exchange efficiency, equivalent to 1.3 times the previously most powerful efficiency. The application of this catalyst to the liquid phase catalytic exchange process is expected to overcome significant technological hurdles with regards to improving the reliability and efficiency of systems for collecting tritium from tritiated water.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.