Refine your search:     
Report No.
 - 

3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution

Koike, Katsuaki*; Kubo, Taiki*; Liu, C.*; Masoud, A.*; Amano, Kenji  ; Kurihara, Arata*; Matsuoka, Toshiyuki; Lanyon, B.*

This study integrates 3D models of rock fractures from different sources and hydraulic properties aimed at identifying relationships between fractures and permeability. A geostatistical method (GEOFRAC) that can incorporate orientations of sampled data was applied to 50,900 borehole fractures for spatial modeling of fractures over a 12 km by 8 km area, to a depth of 1.5 km. GEOFRAC produced a plausible 3D fracture model, in that the orientations of simulated fractures correspond to those of the sample data and the continuous fractures appeared near a known fault. Small-scale fracture distributions with dominant orientations were also characterized around the two shafts using fracture data from the shaft walls. By integrating the 3D model of hydraulic conductivity using sequential Gaussian simulation with the GEOFRAC fractures from the borehole data, the fracture sizes and directions that strongly affect permeable features were identified.

Accesses

:

- Accesses

InCites™

:

Percentile:65.77

Category:Geochemistry & Geophysics

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.