Refine your search:     
Report No.

Electronic structures of ferromagnetic superconductors UGe$$_{2}$$ and UCoGe studied by angle-resolved photoelectron spectroscopy

Fujimori, Shinichi; Okochi, Takuo*; kawasaki, Ikuto*; Yasui, Akira*; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

The electronic structures of the ferromagnetic superconductors UGe$$_2$$ and UCoGe in the paramagnetic phase were studied by angle-resolved photoelectron spectroscopy using soft X-rays ($$h nu$$ = 400-500 eV). The quasi-particle bands with large contributions from U 5$$f$$ states were observed in the vicinity of EF, suggesting that the U 5$$f$$ electrons of these compounds have an itinerant character. Their overall band structures were explained by the band-structure calculations treating all the U 5$$f$$ electrons as being itinerant. Meanwhile, the states in the vicinity of EF show considerable deviations from the results of band-structure calculations, suggesting that the shapes of Fermi surface of these compounds are qualitatively different from the calculations, possibly caused by electron correlation effect in the complicated band structures of the low-symmetry crystals. Strong hybridization between U 5$$f$$ and $$mathrm{Co} 3d$$ states in UCoGe were found by the $$mathrm{Co}$$ 2p-3d resonant photoemission experiment, suggesting that $$mathrm{Co} 3d$$ states have finite contributions to the magnetic, transport, and superconducting properties.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.