Refine your search:     
Report No.

Toward modeling of stomatal conductance under elevated ozone in forest trees

Hoshika, Yasutomo*; Watanabe, Makoto*; Katata, Genki; De Marco, A.*; Deushi, Makoto*; Carriero, G.*; Koike, Takayoshi*; Paoletti, E.*

Ozone (O$$_{3}$$) enters leaves via stomata and causes a damage to leaves of trees. Modeling of stomatal conductance (g$$_{s}$$) is considered as an essential factor to assess O$$_{3}$$ impacts. In this presentation, our recent progress of research for the modeling of g$$_{s}$$ under elevated O$$_{3}$$ is summarized. First, we investigated g$$_{s}$$ parameters of the Jarvis-type model for forest tree types throughout the world. The optimal temperature of g$$_{s}$$ and g$$_{s}$$ response to predawn water potential changed according to the growth conditions. Next, an optimization model of stomata including O$$_{3}$$ effects was tested in free-air O$$_{3}$$ exposure experiment on Siebold's beech in Japan. The optimal stomatal model explained O$$_{3}$$-induced stomatal closure in early summer. However, in late summer and autumn, the model did not explain the effects of O$$_{3}$$ on g$$_{s}$$. This reflects the loss of closing response of stomata by O$$_{3}$$ (stomatal sluggishness) such as under low light conditions. Finally, we examined the effects of O$$_{3}$$-induced stomatal sluggishness on carbon gain and transpiration of temperate deciduous forests in the Northern Hemisphere by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. Our findings are consistent with previous experimental evidences, suggesting significant impairment of forest carbon and water balances attributed by O$$_{3}$$-induced stomatal sluggishness.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.