Refine your search:     
Report No.

Fuel restructuring behavior analysis of MA-bearing MOX fuels irradiated in a fast reactor

Ozawa, Takayuki; Ikusawa, Yoshihisa; Kato, Masato

A recycle system for minor actinides (MAs), in which MAs are recycled by reprocessing and irradiating them in a fast reactor, is studied to reduce the degree of hazard and the amount of high-level radioactive wastes. MAs would be used as mixed oxide (MOX) fuels with plutonium and uranium in fast reactors. Since MA content of MA-bearing MOX (MA-MOX) to be used in fast reactors is assumed to reach $$sim$$5 wt%HM, the effects on not only fuel properties but also fuel behaviors have to be estimated to use MA-MOX as fast reactor fuels. As the MOX fuels to be used will be irradiated at a comparably high linear power and the fuel center temperature would be assumed to be over 2,273 K during irradiation in the fast reactors, fuel restructuring would take place due to void migration towards the fuel center under the radial temperature gradient, and a central void would be formed. Since the fuel center temperature would be decreased by the effect of formation of the central void, the fuel restructuring is one of the most important behaviors for fast reactor fuels. In this study, the effect of MA content on fuel restructuring behavior was estimated from the results of irradiation experiments such as B11 and B14 performed in Joyo to study the irradiation behaviors of MA-MOX and the calculation results using a fuel restructuring model which can take into account MA-MOX dependence on vapor pressure.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.