Refine your search:     
Report No.
 - 

Defect levels in GaAs p$$^+$$n diodes embedded with InAs quantum dot layers

Sato, Shinichiro; Schmieder, K.*; Hubbard, S.*; Forbes, D.*; Warner, J.*; Oshima, Takeshi; Walters, R.*

III-V semiconductor devices embedded with quantum dots (QDs) are expected to be applied to next generation space solar cells. High density QDs and highly stacked QD layers without stacking fault are required in order to relaize QD solar cells, and have been obtained recently by using strain compensating technology. However, larger amount of defects are still incorporated into QD devices compared to single crystal devices and affect the device characteristics. In this study, we fabricated GaAs p$$^+$$n diode with 10 layers of InAs QDs by Metal Organic Vapor Phase Epitaxy (MOVPE) method and characterized defect levels in the devices using Deel Level Transient Spectroscopy (DLTS). The results were compared to reference samples which were GaAs p$$^+$$n diodes without InAs QDs. It was shown that unique electron and hole trap levels were found in the QD devices and thus we concluded that these traps should be reduced in order to improve the device quality.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.