Refine your search:     
Report No.
 - 

Magnetohydrodynamic instability excited by interplay between a resistive wall mode and stable ideal magnetohydrodynamic modes in rotating tokamak plasmas

Aiba, Nobuyuki; Hirota, Makoto*

A mechanism exciting magnetohydrodynamic (MHD) instabilities in rotating tokamak plasmas is found numerically for the first time. This mechanism is the interplay between a resistive wall mode (RWM) and a stable MHD mode. When the plasma has a stable discrete eigenmode, a reversed shear Alfv$'e$n eigenmode (RSAE) for example, a MHD mode is destabilized when plasma equilibrium rotation frequency is similar to the frequency of this stable eigenmode in a static equilibrium. This destabilization is also observed even when the eigenmode couples with Alfv$'e$n continua. This result suggests that for steady state high beta tokamaks, like DEMO, it is necessary to shape the safety factor profile in such a way that no stable eigenmode exists in the band of rotation frequency. With a dispersion relation, it was shown explicitly that plasma rotation switches the unstable mode from the RWM to the ideal MHD mode destabilized by wall resistivity.

Accesses

:

- Accesses

InCites™

:

Percentile:9.03

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.