Refine your search:     
Report No.

Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li$$_{2}$$RuO$$_{3}$$ epitaxial film electrodes and ${{it in situ}}$ surface X-ray analysis

Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Kim, K.-S.*; Zheng, Y.*; Tamura, Kazuhisa  ; Mizuki, Junichiro; Kanno, Ryoji*

The surface structure of a lithium-rich layered material and its relation to intercalation properties were investigated by synchrotron X-ray surface structural analyses using Li$$_{2}$$RuO$$_{3}$$ epitaxial-film model electrodes with different lattice planes of (010) and (001). Electrochemical charge-discharge measurements confirmed reversible lithium intercalation activity through both planes, corresponding to three-dimensional lithium diffusion within the Li$$_{2}$$RuO$$_{3}$$. The (001) plane exhibited higher discharge capacities compared to the (010) plane under high rate operation (over 5 C). Direct observations of surface structural changes by ${{it in situ}}$ surface X-ray diffraction (XRD) and surface X-ray absorption near edge structure (XANES) established that an irreversible phase change occurs at the (010) surface during the first (de)intercalation process, whereas reversible structural changes take place at the (001) surface.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.