Refine your search:     
Report No.
 - 

Research and development on risk assessment methodology for sodium-cooled fast reactor against external hazards

Yamano, Hidemasa   ; Nishino, Hiroyuki  ; Okano, Yasushi; Kurisaka, Kenichi ; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Furukawa, Ryuta*; Geshi, Nobuo*; Nanayama, Futoshi*; Takata, Takashi*; Azuma, Emiko*

A four-year research project since 2012 is being performed to develop risk assessment methodologies that include probabilistic risk assessment (PRA) and margin assessment methodologies against external hazards mainly for a sodium-cooled fast reactor. The present paper describes briefly the project overview and then mainly the development of PRA and margin assessment methodologies against strong wind. In this project, by 2014, PRA methodologies against snow, tornado, rain and strong wind were developed as well as their hazard evaluation methodologies. For a volcanic eruption hazard, tephra fallout simulations were carried out to contribute to the hazard evaluation methodology development. In developing the strong wind PRA methodology, hazard curves were estimated using the Gumbel distributions based on weather data recorded in Japan. Next, failure probabilities for components related to the decay heat removal function were calculated as a product of two probabilities: a probability for the missiles to enter the intake/outtake in the decay heat removal system, and fragility caused by the missile impacts. After developing event trees, a core damage frequency was estimated about 6$$times$$10$$^{-9}$$/year by multiplying discrete hazard frequencies and conditional decay heat removal failure probabilities. The present study also developed the wind margin assessment methodology that the margin was regarded as wind speed leading to the decay heat removal failure.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.