Refine your search:     
Report No.
 - 

Splashing during liquid jet impact onto a horizontal wall

Okawa, Tomio*; Oya, Naoki*; Yi, Z.*; Enoki, Koji*; Ohno, Shuji  ; Aoyagi, Mitsuhiro 

It is important to set the amount of sodium droplet mechanistically for appropriate numerical evaluations of sodium leak and fire behavior in a sodium-cooled fast reactor plant. In the present work, fundamental experiments were performed to measure the rate of splashing during the vertical water jet impact onto a horizontal wall. It was found that the splashing rate is negligibly small when the water jet is continuous at the impact point. Whilst, the splashing rate increased rapidly with an increase in the jet velocity when the jet was broken into droplets at the impact point. Therefore, when the fall height is longer than the breakup length, it was suggested that the dimensionless splashing rate scaled by the liquid jet flow rate can be expressed as a function of the modified Weber number of the primary droplets impacting the target. A semi-empirical method to estimate the splashing rate during liquid jet impact onto a horizontal wall was proposed based on linear stability theory.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.