Refine your search:     
Report No.

Progress of target system operation at the pulsed spallation neutron source in J-PARC

Takada, Hiroshi  ; Naoe, Takashi  ; Kai, Tetsuya  ; Kogawa, Hiroyuki ; Haga, Katsuhiro 

In J-PARC, we have continuously been making efforts to operate a mercury target of a pulsed spallation neutron source with rated power of 1-MW. One of technical progresses is to mitigate cavitation damages at the target vessel front induced by the 3-GeV proton beam injection at 25 Hz. We have improved the performance of a gas micro-bubbles injection into the mercury target, resulting that no significant cavitation damages was observed on the inner surface of target vessel after operation for 2050 MWh with the 300-kW proton beam. Another progress is to suppress the release of gaseous radioactive isotopes, especially tritium, during the target vessel replacement. We have introduced a procedure to evacuate the target system by an off-gas processing apparatus when it is opened during the replacement operation, achieving to suppress the tritium release through the stack. For example, the amount of released tritium was 12.5 GBq, only 5.4% of the estimated amount, after the 2050 MWh operation. After these progresses, the operating beam power for the pulsed spallation neutron source was ramped up to 500-kW in April, 2015.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.