Refine your search:     
Report No.
 - 

Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

Sato, Shunsuke*; Yabana, Kazuhiro*; Shinohara, Yasushi*; Otobe, Tomohito; Lee, K.-M.*; Bertsch, G. F.*

We calculate the energy deposition by very short laser pulses in SiO$$_{2}$$ ($$alpha$$-quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy deposition function can in turn be quite well fitted to the strong-field Keldysh formula. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. The ablation threshold estimated by the energy to convert the substrate to an atomic fluid is higher than the measurement, indicating significance of nonthermal nature of the process. A fair agreement is found for the depth of the ablation.

Accesses

:

- Accesses

InCites™

:

Percentile:84.85

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.