Refine your search:     
Report No.
 - 

Global kinetic simulations for neoclassical toroidal viscosity in perturbed tokamak plasmas

Matsuoka, Seikichi ; Idomura, Yasuhiro   ; Satake, Shinsuke*

Effects of non-axisymmetric magnetic field perturbations have attracted much attention from the view point of the control of the plasma performance and instabilities. The perturbations cause the neoclassical toroidal viscosity (NTV) due to the non-ambipolar particle transport. Recent studies pointed out that the qualitative discrepancy of the NTV prediction exist between a theoretical bounce-averaged model and a global kinetic simulation. It is crucial to clarify the cause of the discrepancy to establish a reliable basis for the NTV predictions. In this work, we perform two types of global kinetic simulations for the NTV to investigate the discrepancy from the theoretical model. As a result, it is first demonstrated that the discrepancy arises due to the following two mechanisms; the absence of the magnetic field shear effect in the bounce-averaged model and the so-called transient particle orbit caused by the non-axisymmetric perturbations.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.