Refine your search:     
Report No.

Effect of hydrocarbons on the efficiency of catalytic reactor of detritiation system in an event of fire

Edao, Yuki; Sato, Katsumi; Iwai, Yasunori; Hayashi, Takumi

Detritiation system of a nuclear fusion plant is mandatory to be designed and qualified taking all the possible extraordinary situations in addition to that in a normal condition carefully into consideration. We focused on the change in efficiency of tritium oxidation of a catalytic reactor in an event of fire where the air accompanied with hydrocarbons, water vapor and tritium is fed into a catalytic reactor at the same time. Our test results indicated; (1) tritiated hydrocarbon produces significantly by reaction between tritium and hydrocarbons in a catalytic reactor; (2) there is little possibility of degradation in detritiation performance due to tritiated hydrocarbons produced in the catalyst reactor are combusted; (3) there is no possibility of uncontrollable rise in temperature of the catalytic reactor by heat of reactions; and (4) saturated water vapor enables to poison the catalyst temporarily and degrades the detritiation performance. Our investigation indicated a saturated water vapor condition without hydrocarbons would be the dominant scenario to determine the amount of catalyst for the design of catalytic reactor of the detritiation system.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.