Refine your search:     
Report No.

Gas-liquid bubbly flow structure in a vertical large-diameter square duct

Shen, X.*; Sun, Haomin  ; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo 

An experimental study was performed on the local structure of upward air-water two-phase flow in a vertical large diameter square duct by using a four-sensor probe. The four-sensor probe method classifying spherical and non-spherical bubbles was applied as a key measurement way to obtain local parameters such as 3-D bubble velocity vector, bubble diameter and interfacial area concentration. Both the local void fraction and interfacial area concentration indicated radial core-peak and wall-peak distributions at low and high liquid flow rates respectively. The 2 components of the bubble velocity vector in the cross-section revealed that there exists a rotating secondary flow in the octant symmetric triangular area and the magnitude of the rotating secondary flow increases with the liquid flow rate. Some of constitutive correlations of drift-flux model and interfacial area concentration are reviewed to study their predictabilities against the present data.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.