Refine your search:     
Report No.

Numerical simulations of gas-liquid-particle three-phase flows using a hybrid method

Guo, L.*; Morita, Koji*; Tobita, Yoshiharu

For the analysis of debris behavior in core disruptive accidents of liquid metal fast reactors, a hybrid computational tool was developed using the discrete element method (DEM) for calculation of solid particle dynamics and a multi-fluid model of a reactor safety analysis code, SIMMER-III, to reasonably simulate transient behavior of three-phase flows of gas-liquid-particle mixtures. A coupling numerical algorithm was developed to combine the DEM and fluid-dynamic calculations, which are based on an explicit and a semi-implicit method, respectively. The developed method was validated based on experiments of water-particle dam break and fluidized bed in systems of gas-liquid-particle flows. Reasonable agreements between the simulation results and experimental data demonstrate the validity of the present method for complicated three-phase flows with large amounts of solid particles.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.