Refine your search:     
Report No.
 - 

First ionization energy measurements of heaviest actinides, lawrencium and nobelium

Sato, Tetsuya   

We measured the first ionization energy (IE$$_1$$) of nobelium (No, Z = 102) and lawrencium (Lr, Z =103) by exploiting the dependence of the ionization efficiency ($$I_{rm eff}$$) on the IE$$_1$$ in a surface ionization process. The isotopes $$^{257}$$No ($$T_{1/2}$$ = 24.5s) and $$^{256}$$Lr ($$T_{1/2}$$ = 27 s), produced in the reaction $$^{248}$$Cm ($$^{13}$$C, 4n) and $$^{249}$$Cf ($$^{11}$$B, 4n), respectively, were used for studying their ionization. The reaction products recoiling from the targets were transported to a surface ion-source by a He/CdI$$_2$$ gas-jet transport system. The products ionized in the ion-source were mass-separated with JAEA-ISOL. The number of ions collected at the end of the ISOL was determined by $$alpha$$-particle measurements and was used to evaluate $$I_{rm eff}$$ values. With the present system, we successfully ionized and mass-separated $$^{257}$$No and $$^{256}$$Lr with efficiencies of (0.5 $$pm$$ 0.1)% and (36 $$pm$$ 7)% at 2800 K, respectively. From these $$I_{rm eff}$$ values, IE$$_1$$ values of No and Lr were determined based on the relationship between $$I_{rm eff}$$ and IE$$_1$$. Our values are in good agreement with the predicted ones by theoretical calculations.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.