Refine your search:     
Report No.

A Scrutinized analysis on the power reactivity loss measurement in Monju

Taninaka, Hiroshi; Kishimoto, Yasufumi; Mori, Tetsuya ; Usami, Shin 

Reactivity loss due to power ascension (power reactivity loss or power coefficient of reactivity) is thus an important design parameter for determining the number of CRs and plutonium content or inventory in the SFR core design, along with the burnup reactivity loss. Measurements on these reactivity losses were therefore performed during the system startup tests in the Japanese prototype SFR Monju in 1995 and analyses have been carried out for several times. The most recent analysis on the power coefficient measurement in Monju was presented by Takano (Takano, et al., 2008). The following latest findings, which have not been taken into account in the past analyses, are available at present and may affect the existing results: (a) in-core temperature distribution effect, (b) crystalline binding effect, (c) logarithmic averaging of the fuel temperature, (d) localized fuel thermal elongation effect, (e) updated Japanese Evaluated Nuclear Data Library, JENDL-4.0, and (f) refined corrections on the measured value. The influences of refining the calculational models and measured value corrections were therefore quantitatively identified in this study by considering all of these new findings. As a result, it was revealed that the analysis overestimates the experiment by 8.1% for the total uncertainty of 5.9%. Therefore, an additional effect, that is the core bowing effect, was considered in the calculation, and the discrepancy was reduced to 2.9%. The possibility of a significant contribution from the core bowing or deformation effect was thus suggested.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.