Refine your search�ソスF     
Report No.

Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells

Zhao, Y.; Yoshida, Miru*; Oshima, Tatsuya*; Koizumi, Satoshi*; Rikukawa, Masahiro*; Szekely, N.*; Radulescu, A.*; Richter, D.*

We investigated the structure and the swelling behavior of two synthesized hydrocarbon polymer electrolyte membranes, made of multiblock copolymer poly(sulphonate phenylene)-b-poly(arylene ether ketone) with different block ratios, by using small-angle neutron scattering technique. A scattering maximum (ionomer peak) at high-q range is shown commonly in both dry and wet states, with q being the magnitude of the scattering vector, while it shifts towards low-q region in the wet state due to the swelling of the ionomer domains with water. The swelling effect also results to a second scattering maximum in the middle-q range because of the water-induced microphase separation. The morphology in this q-range was elucidated in terms of Hard-Sphere model with Percus-Yervick interference approximation.



- Accesses




Category:Polymer Science



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.