Neoclassical toroidal viscosity calculation method by a particle code based on a local approximation drift-kinetic model
Satake, Shinsuke*; Sugama, Hideo*; Kanno, Ryutaro*; Matsuoka, Seikichi ; Idomura, Yasuhiro ; Huang, B.*
The accurate evaluation of the neoclassical toroidal viscosity (NTV) driven by non-axisymmetric external perturbation and/or error field in a tokamak plasma is an important topic in the fusion research, since it can make an influence on the plasma toroidal rotation. This has been widely done so far by analytically and numerically solving the bounce-averaged drift-kinetic equation based on the so-called local approximation, under which the radial drift the particle is neglected. Recently, we have developed two global kinetic simulations based on and full- models respectively. It has been shown that the so-called Superbanana-Plateau collisionality regime expected in the bounce-averaged theory, in which the NTV is independent of the collisionality, is not observed in both global kinetic simulations. On the other hand, however, the two global simulations reproduce the similar collisionality dependencies of the NTV. With regard to the discrepancy of the theory and the global kinetic simulations, it has been recently pointed out that the effect of the magnetic field shear on the toroidal precession drift is not retained in the theory. In this study, we perform particle simulations, which is based on the local approximation, for the NTV. We discuss the cause of the discrepancy of the difference between the bounce-averaged local theory and the global kinetic simulations by investigating the effect of shear on the toroidal precession drift using the local particle simulations.