Refine your search�ソスF     
Report No.

Preliminary results of the laser charge exchange test using the 3-MeV linac in J-PARC

Takei, Hayanori   ; Hirano, Koichiro  ; Tsutsumi, Kazuyoshi; Chishiro, Etsuji; Miura, Akihiko ; Kondo, Yasuhiro   ; Morishita, Takatoshi  ; Oguri, Hidetomo  ; Meigo, Shinichiro   

Accelerator-driven system (ADS) is one of candidates to transmute long-lived nuclides such as minor actinide (MA) produced at nuclear reactor. For efficient transmutation of the MA, precise prediction of neutronics of ADS is indispensable. In order to obtain the neutronics data for the ADS, J-PARC has a plan to build the Transmutation Physics Experimental Facility (TEF-P). Since the TEF-P requires stable power of the beam and will operate with thermal power less than 500 W and the proton beam power of 10 W so that a stable and meticulous beam extraction method is required to extract small amount of the beam from the high power LINAC beam with 250 kW. To fulfill requirement, Laser charge exchange method (LCE) has been developed for delivery of 400-MeV proton beam with 25Hz to the TEF-P. The LCE strips the electron of H$$^{-}$$ beam and H$$^{0}$$ will separate at the bending magnet at the proton beam transport. The LCE device consists of YAG-laser with high power as 1.6 J/shot and 25 Hz and transport control system with high accuracy of the beam position. For the demonstration of the charge exchange of the H$$^{-}$$, the further LCE tests is conducted using H$$^{-}$$ beam with energy of 3-MeV at RFQ test stand in J-PARC. In this paper, present status of LCE tests is presented.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.