Refine your search:     
Report No.

Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

Nemoto, Yoshiyuki  ; Kaji, Yoshiyuki  ; Ogawa, Chihiro; Nakashima, Kazuo*; Tojo, Masayuki*

In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures and different air flow rates in this work. Oxidation rate increased with temperature. In range of air flow rate predicted in spent fuel lack during SFP accident, influence of flow rate was not clearly observed below 950$$^{circ}$$C for Zry2 and below 1050$$^{circ}$$C for Zry4. Over these temperature, oxidation rates appeared obviously higher in higher air flow rate, and this trend became clearer when temperature increased. Oxide layers were carefully examined after the oxidation tests and compared with the mass gain data in TGA to investigate detail of air oxidation process. The results revealed that mass gain data in the pre breakaway transition stage reflects growth of the dense oxide film on specimen surface, and in the post breakaway transition stage, it reflects growth of porous oxide layer beneath the breakaway cracking of the oxide film.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.